The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Detecting Server-Side Request Forgery (SSRF) Attack by using Deep Learning Techniques

Author 1: Khadejah Al-talak
Author 2: Onytra Abbass

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0121230

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 12, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Server-side request forgery (SSRF) is a security vulnerability that arises from a vulnerability in web applications. For example, when the services are accessed via URL the attacker supply or modify a URL to access services on servers that he is not permitted to use. In this research, various types of SSRF attacks are discussed, and how to secure web applications are explained. Various techniques have been used to detect and mitigate these attacks, most of which are concerned with the use of machine learning techniques. The main focus of this research was the application of deep learning techniques (LSTM networks) to create an intelligent model capable of detecting these attacks. The generated deep learning model achieved an accuracy rate of 0.969, which indicates the strength of the model and its ability to detect SSRF attacks.

Keywords: Server-side request forgery (SSRF); machine learning (ML); deep learning (DL); long short-term memory (LSTM)

Khadejah Al-talak and Onytra Abbass, “Detecting Server-Side Request Forgery (SSRF) Attack by using Deep Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 12(12), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121230

@article{Al-talak2021,
title = {Detecting Server-Side Request Forgery (SSRF) Attack by using Deep Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121230},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121230},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {12},
author = {Khadejah Al-talak and Onytra Abbass}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org