The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121231
PDF

English Semantic Similarity based on Map Reduce Classification for Agricultural Complaints

Author 1: Esraa Rslan
Author 2: Mohamed H. Khafagy
Author 3: Kamran Munir
Author 4: Rasha M.Badry

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 12, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Due to environmental changes, including global warming, climatic changes, ecological impact, and dangerous diseases like the Coronavirus epidemic. Since coronavirus is a hazardous disease that causes many deaths, government of Egypt undertook many strict regulations, including lockdowns and social distancing measures. These circumstances have affected agricultural experts' presence to help farmers or advise on solving agricultural problems. For helping this issue, this work focused on improving support for farmers on the major field crops in Egypt Retrieving solutions corresponding to farmer query. For our work, we have mainly focused on detecting the semantic similarity between large agriculture dataset and user queries using Latent Semantic Analysis (LSA) based on Term Frequency Weighting and Inverse Document Frequency (TF-IDF) method. In this research paper, we apply SVM MapReduce classifier as a framework for paralleling and distributing the work on the dataset to classify the dataset. Then we apply different approaches for computing the similarity of sentences. We presented a system based on semantic similarity methods and support vector machine algorithm to detect the similar complaints of the user query. Finally, we run different experiments to evaluate the performance and efficiency of the proposed system as the system performs approximately 77.8%~94.8% in F-score measure. The experimental results show that the accuracy of SVM classifier is approximately 88.68%~89.63% and noted the leverage of SVM classification to the semantic similarity measure between sentences.

Keywords: Agricultural system; semantic textual similarity; text classification; latent semantic analysis; part of speech

Esraa Rslan, Mohamed H. Khafagy, Kamran Munir and Rasha M.Badry, “English Semantic Similarity based on Map Reduce Classification for Agricultural Complaints” International Journal of Advanced Computer Science and Applications(IJACSA), 12(12), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121231

@article{Rslan2021,
title = {English Semantic Similarity based on Map Reduce Classification for Agricultural Complaints},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121231},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121231},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {12},
author = {Esraa Rslan and Mohamed H. Khafagy and Kamran Munir and Rasha M.Badry}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org