The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120213
PDF

A Meta-analysis of Educational Data Mining for Predicting Students Performance in Programming

Author 1: Devraj Moonsamy
Author 2: Nalindren Naicker
Author 3: Timothy T. Adeliyi
Author 4: Ropo E. Ogunsakin

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 2, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: An essential skill amid the 4th industrial revolution is the ability to write good computer programs. Therefore, higher education institutions are offering computer programming as a module not only in computer related programmes but other programmes as well. However, the number of students that underperform in programming is significantly higher than the non-programming modules. It is, therefore, crucial to be able to accurately predict the performance of students pursuing programming since this will help in identifying students that may underperform and the necessary support interventions can be timeously put in place to assist these students. The objective of this study is therefore to obtain the most effective Educational Data Mining approaches used to identify those students that may underperform in computer programming. The PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) approach was used in conducting the meta-analysis. The databases searched were, namely, ACM, Google Scholar, IEEE, Pro-Quest, Science Direct and Scopus. A total of 11 scientific research publications were included in the meta-analysis for this study from 220 articles identified through database searching. The residual amount of heterogeneity was high (τ2 = 0.03; heterogeneity I2 = 99.46% with heterogeneity chi-square = 1210.91, a degree of freedom = 10 and P = <0.001). The estimated pooled performance of the algorithms was 24% (95% CI (13%, 35%). Meta-regression analysis indicated that none of the moderators included have influenced the heterogeneity of studies. The result of effect estimates against its standard error indicated publication bias with a P-value of 0.013. These meta-analysis findings indicated that the pooled estimate of algorithms is high.

Keywords: Data mining; educational data mining; machine learning; performance; programming

Devraj Moonsamy, Nalindren Naicker, Timothy T. Adeliyi and Ropo E. Ogunsakin, “A Meta-analysis of Educational Data Mining for Predicting Students Performance in Programming” International Journal of Advanced Computer Science and Applications(IJACSA), 12(2), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120213

@article{Moonsamy2021,
title = {A Meta-analysis of Educational Data Mining for Predicting Students Performance in Programming},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120213},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120213},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {2},
author = {Devraj Moonsamy and Nalindren Naicker and Timothy T. Adeliyi and Ropo E. Ogunsakin}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org