The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120225
PDF

Hybrid Feature Selection and Ensemble Learning Methods for Gene Selection and Cancer Classification

Author 1: Sultan Noman Qasem
Author 2: Faisal Saeed

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 2, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A promising research field in bioinformatics and data mining is the classification of cancer based on gene expression results. Efficient sample classification is not supported by all genes. Thus, to identify the appropriate genes that help efficiently distinguish samples, a robust feature selection method is needed. Redundancy in the data on gene expression contributes to low classification performance. This paper presents the combination for gene selection and classification methods using ranking and wrapper methods. In ranking methods, information gain was used to reduce the size of dimensionality to 1% and 5%. Then, in wrapper methods K-nearest neighbors and Naïve Bayes were used with Best First, Greedy Stepwise, and Rank Search. Several combinations were investigated because it is known that no single model can give the best results using different datasets for all circumstances. Therefore, combining multiple feature selection methods and applying different classification models could provide a better decision on the final predicted cancer types. Compared with the existing classifiers, the proposed assembly gene selection methods obtained comparable performance.

Keywords: Microarray; gene selection; ensemble classification; cancer classification; gene expression

Sultan Noman Qasem and Faisal Saeed, “Hybrid Feature Selection and Ensemble Learning Methods for Gene Selection and Cancer Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 12(2), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120225

@article{Qasem2021,
title = {Hybrid Feature Selection and Ensemble Learning Methods for Gene Selection and Cancer Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120225},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120225},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {2},
author = {Sultan Noman Qasem and Faisal Saeed}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org