The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120248
PDF

Exploratory Study of Some Machine Learning Techniques to Classify the Patient Treatment

Author 1: Mujiono Sadikin
Author 2: Ida Nurhaida
Author 3: Ria Puspita Sari

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 2, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Numerous studies have been carried out on computation and its applications to medical data with proven benefits for improving the quality of public health. However, not all research results or practical applications can be applied to all conditions but must be in accordance with the various contexts such as community culture, geographical, or citizen behaviors. Unfortunately, the use of digital data in Indonesia is still very limited. The study objective is to assess various data mining techniques to utilize data from laboratory test results collected from a private hospital in Indonesia in predicting the next patient treatment. Furthermore, various machine learning classification techniques were explored for the purpose. Based on the experiments, it was concluded that XGBoost with hyperparameter tuning produced the best accuracy level at 0.7579, compared to other classifiers. A better level of accuracy can be obtained by enriching the type of dataset used, such as the patient's medical record history.

Keywords: Electronic health record; XGBoost; patient treatment; patient laboratory test data

Mujiono Sadikin, Ida Nurhaida and Ria Puspita Sari, “Exploratory Study of Some Machine Learning Techniques to Classify the Patient Treatment” International Journal of Advanced Computer Science and Applications(IJACSA), 12(2), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120248

@article{Sadikin2021,
title = {Exploratory Study of Some Machine Learning Techniques to Classify the Patient Treatment},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120248},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120248},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {2},
author = {Mujiono Sadikin and Ida Nurhaida and Ria Puspita Sari}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org