The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120262
PDF

Machine Learning based Optimization Scheme for Detection of Spam and Malware Propagation in Twitter

Author 1: Savita Kumari Sheoran
Author 2: Partibha Yadav

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 2, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Social networking sites are new generation of web-services providing global community of users in an online environment. Twitter is one of such popular social networks having more than 152 million daily active users making a half billions of tweets per day. Owing to its immense popularity, the accounts of legitimate Twitter users are always at a risk from spammers and hackers. Spam and Malware are the most affecting threats reported on the Twitter platform. To preserve the privacy and ensure data safety for online Twitter community, it is necessary develop a framework to safeguard their accounts from such malicious attackers. Machine Learning is recently matured and widely used technique useful to prevent the propagation of such malicious activities in social media. However, the Machine Learning based techniques have yielded a promising result in filtering the undesired contents from the user tweets but its efficiency always remains restricted within the technological limits of the technique used. To devise a more efficient model to detect propagation of spam and malware in the Twitter, this research has proposed a Machine Learning based optimization scheme based on hybrid similarity (Cosine and Jaccard) measured in conjunction with Genetic Algorithm (GA) and Artificial Neural Network (ANN). The Cosine with Jaccard in hybridization has been applied on the Twitter dataset to identify the tweets containing spam and malware. In conjunction to it the GA has been used to enhance the training rate and reduce training error by automatically selecting the designed fitness function while the ANN was applied to classify malicious tweets from through voting rule. The simulation experiments were conducted to compute the precision rate, recall, F-measures. The results of Machine Learning based optimization scheme proposed in this research were compared with the existing state-of-arts techniques already available in this regime. The comparative study reveals that the model proposed in this research is faster and more precise then the existing models.

Keywords: Social networking sites, Twitter, spam, malware, Cosine similarity, Jaccard similarity, genetic algorithm, artificial neural network

Savita Kumari Sheoran and Partibha Yadav, “Machine Learning based Optimization Scheme for Detection of Spam and Malware Propagation in Twitter” International Journal of Advanced Computer Science and Applications(IJACSA), 12(2), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120262

@article{Sheoran2021,
title = {Machine Learning based Optimization Scheme for Detection of Spam and Malware Propagation in Twitter},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120262},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120262},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {2},
author = {Savita Kumari Sheoran and Partibha Yadav}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org