The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120298
PDF

Deep Reinforcement Learning based Handover Management for Millimeter Wave Communication

Author 1: Michael S. Mollel
Author 2: Shubi Kaijage
Author 3: Michael Kisangiri

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 2, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The Millimeter Wave (mm-wave) band has a broad-spectrum capable of transmitting multi-gigabit per-second date-rate. However, the band suffers seriously from obstruction and high path loss, resulting in line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions. All these lead to significant fluctu-ation in the signal received at the user end. Signal fluctuations present an unprecedented challenge in implementing the fifth gen-eration (5G) use-cases of the mm-wave spectrum. It also increases the user’s chances of changing the serving Base Station (BS) in the process, commonly known as Handover (HO). HO events become frequent for an ultra-dense dense network scenario, and HO management becomes increasingly challenging as the number of BS increases. HOs reduce network throughput, and hence the significance of mm-wave to 5G wireless system is diminished without adequate HO control. In this study, we propose a model for HO control based on the offline reinforcement learning (RL) algorithm that autonomously and smartly optimizes HO decisions taking into account prolonged user connectivity and throughput. We conclude by presenting the proposed model’s performance and comparing it with the state-of-art model, rate based HO scheme. The results reveal that the proposed model decreases excess HO by 70%, thus achieving a higher throughput relative to the rates based HO scheme.

Keywords: Handover management; 5G; machine learning; re-inforcement learning; mm-wave communication

Michael S. Mollel, Shubi Kaijage and Michael Kisangiri, “Deep Reinforcement Learning based Handover Management for Millimeter Wave Communication” International Journal of Advanced Computer Science and Applications(IJACSA), 12(2), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120298

@article{Mollel2021,
title = {Deep Reinforcement Learning based Handover Management for Millimeter Wave Communication},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120298},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120298},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {2},
author = {Michael S. Mollel and Shubi Kaijage and Michael Kisangiri}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org