The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120327
PDF

Speech-to-Text Conversion in Indonesian Language Using a Deep Bidirectional Long Short-Term Memory Algorithm

Author 1: Suci Dwijayanti
Author 2: Muhammad Abid Tami
Author 3: Bhakti Yudho Suprapto

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 3, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Nowadays, speech is used also for communication between humans and computers, which requires conversion from speech to text. Nevertheless, few studies have been performed on speech-to-text conversion in Indonesian language, and most studies on speech-to-text conversion were limited to the conversion of speech datasets with incomplete sentences. In this study, speech-to-text conversion of complete sentences in Indonesian language is performed using the deep bidirectional long short-term memory (LSTM) algorithm. Spectrograms and Mel frequency cepstral coefficients (MFCCs) were utilized as features of a total of 5000 speech data spoken by ten subjects (five males and five females). The results showed that the deep bidirectional LSTM algorithm successfully converted speech to text in Indonesian. The accuracy achieved by the MFCC features was higher than that achieved with the spectrograms; the MFCC obtained the best accuracy with a word error rate value of 0.2745% while the spectrograms were 2.0784%. Thus, MFCCs are more suitable than spectrograms as feature for speech-to-text conversion in Indonesian. The results of this study will help in the implementation of communication tools in Indonesian and other languages.

Keywords: Speech-to-text; Deep Bidirectional Long Short-Term Memory (LSTM); spectrogram; Mel frequency cepstral coefficients (MFCC); word error rate

Suci Dwijayanti, Muhammad Abid Tami and Bhakti Yudho Suprapto, “Speech-to-Text Conversion in Indonesian Language Using a Deep Bidirectional Long Short-Term Memory Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 12(3), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120327

@article{Dwijayanti2021,
title = {Speech-to-Text Conversion in Indonesian Language Using a Deep Bidirectional Long Short-Term Memory Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120327},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120327},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {3},
author = {Suci Dwijayanti and Muhammad Abid Tami and Bhakti Yudho Suprapto}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org