The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120351
PDF

SGBBA: An Efficient Method for Prediction System in Machine Learning using Imbalance Dataset

Author 1: Saiful Islam
Author 2: Umme Sara
Author 3: Abu Kawsar
Author 4: Anichur Rahman
Author 5: Dipanjali Kundu
Author 6: Diganta Das Dipta
Author 7: A.N.M. Rezaul Karim
Author 8: Mahedi Hasan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 3, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A real world big dataset with disproportionate classification is called imbalance dataset which badly impacts the predictive result of machine learning classification algorithms. Most of the datasets faces the class imbalance problem in machine learning. Most of the algorithms in machine learning work perfectly with about equal samples counts for every class. A variety of solutions have been suggested in the past time by the different researchers and applied to deal with the imbalance dataset. The performance of these methods is lower than the satisfactory level. It is very difficult to design an efficient method using machine learning algorithms without making the imbalance dataset to balance dataset. In this paper we have designed an method named SGBBA: an efficient method for prediction system in machine learning using Imbalance dataset. The method that is addressed in this paper increases the performance to the maximum in terms of accuracy and confusion matrix. The proposed method is consisted of two modules such as designing the method and method based prediction. The experiments with two benchmark datasets and one highly imbalanced credit card datasets are performed and the performances are compared with the performance of SMOTE resampling method. F-score, specificity, precision and recall are used as the evaluation matrices to test the performance of the proposed method in terms of any kind of imbalance dataset. According to the comparison of the result of the proposed method computationally attains the effective and robust performance than the existing methods.

Keywords: Imbalanced dataset; sub sample; accuracy; fraud; confusion matrix; bagging

Saiful Islam, Umme Sara, Abu Kawsar, Anichur Rahman, Dipanjali Kundu, Diganta Das Dipta, A.N.M. Rezaul Karim and Mahedi Hasan, “SGBBA: An Efficient Method for Prediction System in Machine Learning using Imbalance Dataset” International Journal of Advanced Computer Science and Applications(IJACSA), 12(3), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120351

@article{Islam2021,
title = {SGBBA: An Efficient Method for Prediction System in Machine Learning using Imbalance Dataset},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120351},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120351},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {3},
author = {Saiful Islam and Umme Sara and Abu Kawsar and Anichur Rahman and Dipanjali Kundu and Diganta Das Dipta and A.N.M. Rezaul Karim and Mahedi Hasan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org