The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120415
PDF

Is Deep Learning Better than Machine Learning to Predict Benign Laryngeal Disorders?

Author 1: Haewon Byeon

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 4, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: It is important in otolaryngology to accurately understand the etiology of a laryngeal disorder, diagnose it early, and provide appropriate treatment accordingly. The objectives of this study were to develop models for predicting benign laryngeal mucosal disorders based on deep learning, naive Bayes model, generalized linear model, a Classification and Regression Tree (CART), and random forest using laryngeal mucosal disorder data obtained from a national survey and confirm the best classifier for predicting benign laryngeal mucosal disorders by comparing the prediction performance and runtime of the developed models. This study analyzed 626 subjects (313 people with a laryngeal disorder and 313 people without a laryngeal disorder). In this study, deep learning was the best model with the highest accuracy (0.84). However, the runtime of deep learning was 39min 41sec, which was a 10 times longer development time than CART (3min 7sec). This model confirmed that subjective voice problem recognition, pain and discomfort in the last two weeks, education level, occupation, mean monthly household income, high-risk drinker, and current smoker were major variables with high weight for the benign laryngeal mucosal disorders of Korean adults. Among them, subjective voice problem recognition was the most important factor with the highest weight. The results of this study implied that the prediction performance of deep learning could be better than that of machine learning for structured data, such as health behavior and demographic factors as well as video and image data.

Keywords: Benign laryngeal mucosal disorder; voice disorder; deep learning; Naive Bayes model; generalized linear model

Haewon Byeon, “Is Deep Learning Better than Machine Learning to Predict Benign Laryngeal Disorders?” International Journal of Advanced Computer Science and Applications(IJACSA), 12(4), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120415

@article{Byeon2021,
title = {Is Deep Learning Better than Machine Learning to Predict Benign Laryngeal Disorders?},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120415},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120415},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {4},
author = {Haewon Byeon}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org