The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120438
PDF

ParaDist-HMM: A Parallel Distributed Implementation of Hidden Markov Model for Big Data Analytics using Spark

Author 1: Imad Sassi
Author 2: Samir Anter
Author 3: Abdelkrim Bekkhoucha

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 4, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Big Data is an extremely massive amount of hetero-geneous and multisource data which often requires fast processing and real time analysis. Solving big data analytics problems needs powerful platforms to handle this enormous mass of data and efficient machine learning algorithms to allow the use of big data full potential. Hidden Markov models are statistical models, rich and widely used in various fields especially for time varying data sequences modeling and analysis. They owe their success to the existence of many efficient and reliable algorithms. In this paper, we present ParaDist-HMM, a parallel distributed imple-mentation of hidden Markov model for modeling and solving big data analytics problems. We describe the development and the implementation of the improved algorithms and we propose a Spark-based approach consisting in a parallel distributed big data architecture in cloud computing environment, to put the proposed algorithms into practice. We evaluated the model on synthetic and real financial data in terms of running time, speedup and prediction quality which is measured by using the accuracy and the root mean square error. Experimental results demonstrate that ParaDist-HMM algorithms outperforms other implementations of hidden Markov models in terms of processing speed, accuracy and therefore in efficiency and effectiveness.

Keywords: Big data; machine learning; Hidden Markov model; forward; backward; baum-welch; parallel distributed computing; spark; cloud computing; ParaDist-HMM

Imad Sassi, Samir Anter and Abdelkrim Bekkhoucha, “ParaDist-HMM: A Parallel Distributed Implementation of Hidden Markov Model for Big Data Analytics using Spark” International Journal of Advanced Computer Science and Applications(IJACSA), 12(4), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120438

@article{Sassi2021,
title = {ParaDist-HMM: A Parallel Distributed Implementation of Hidden Markov Model for Big Data Analytics using Spark},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120438},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120438},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {4},
author = {Imad Sassi and Samir Anter and Abdelkrim Bekkhoucha}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org