The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120440
PDF

Body Weight Estimation using 2D Body Image

Author 1: Rohan Soneja
Author 2: Prashanth S
Author 3: R Aarthi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 4, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Two dimensional images of a person implicitly contain several useful biometric information such as gender, iris colour, weight, etc. Among them, body weight is a useful metric for a number of usecases such as forensics, fitness and health analysis, airport dynamic luggage allowance, etc. Most current solutions for body weight estimation from images make use of additional apparatus like depth sensors and thermal cameras along with predefined features such as gender and height which generally make them more computationally intensive. Motivated by the need to provide a time and cost efficient solution, a novel computer-vision based method for body weight estimation using only 2D images of people is proposed. Considering the anthropometric features from the two most common types of images, facial and full body, facial landmark measurements and body joint measurements are used in deep learning and XG boost regression models to estimate the person’s body weight. The results obtained, though comparable to previous approaches, perform much faster due to the reduced complexities of the proposed models, with facial models performing better than full body models.

Keywords: Body weight estimation; deep learning; xgboost regressor; anthropometric features; computer vision

Rohan Soneja, Prashanth S and R Aarthi, “Body Weight Estimation using 2D Body Image” International Journal of Advanced Computer Science and Applications(IJACSA), 12(4), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120440

@article{Soneja2021,
title = {Body Weight Estimation using 2D Body Image},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120440},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120440},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {4},
author = {Rohan Soneja and Prashanth S and R Aarthi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org