The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120495
PDF

A Comparative Analysis of Hadoop and Spark Frameworks using Word Count Algorithm

Author 1: Yassine Benlachmi
Author 2: Abdelaziz El Yazidi
Author 3: Moulay Lahcen Hasnaoui

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 4, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the advent of the Big Data explosion due to the Information Technology (IT) revolution during the last few decades, the need for processing and analyzing the data at low cost in minimum time has become immensely challenging. The field of Big Data analytics is driven by the demand to process Machine Learning (ML) data, real-time streaming data, and graphics processing. The most efficient solutions to Big Data analysis in a distributed environment are Hadoop and Spark administered by Apache, both these solutions are open-source data management frameworks and they allow to distribute and compute the large datasets across multiple clusters of computing nodes. This paper provides a comprehensive comparison between Apache Hadoop & Apache Spark in terms of efficiency, scalability, security, cost-effectiveness, and other parameters. It describes primary components of Hadoop and Spark frameworks to compare their performance. The major conclusion is that Spark is better in terms of scalability and speed for real-time streaming applications; whereas, Hadoop is more viable for applications dealing with bigger datasets. This case study evaluates the performance of various components of Hadoop-such, MapReduce, and Hadoop Distributed File System (HDFS) by applying it to the well-known Word Count algorithm to ascertain its efficacy in terms of storage and computational time. Subsequently, it also provides an analysis of how Spark’s in-line memory processing could reduce the computational time of the Word Count Algorithm.

Keywords: Big data; hadoop; spark; machine learning; Hadoop Distributed File System (HDFS)); mapreduce; word count

Yassine Benlachmi, Abdelaziz El Yazidi and Moulay Lahcen Hasnaoui, “A Comparative Analysis of Hadoop and Spark Frameworks using Word Count Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 12(4), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120495

@article{Benlachmi2021,
title = {A Comparative Analysis of Hadoop and Spark Frameworks using Word Count Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120495},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120495},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {4},
author = {Yassine Benlachmi and Abdelaziz El Yazidi and Moulay Lahcen Hasnaoui}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org