The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120505
PDF

Exploring Machine Learning Techniques for Coronary Heart Disease Prediction

Author 1: Hisham Khdair
Author 2: Naga M Dasari

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 5, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Coronary Heart Disease (CHD) is one of the leading causes of death nowadays. Prediction of the disease at an early stage is crucial for many health care providers to protect their patients and save lives and costly hospitalization resources. The use of machine learning in the prediction of serious disease events using routine medical records has been successful in recent years. In this paper, a comparative analysis of different machine learning techniques that can accurately predict the occurrence of CHD events from clinical data was performed. Four machine learning classifiers, namely Logistic Regression, Support Vector Machine (SVM), K- Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP) Neural Networks were identified and applied to a dataset of 462 medical instances and 9 features as well as the class feature from the South African Heart Disease data retrieved from the KEEL repository. The dataset consists of 302 records of healthy patients and 160 records of patients who suffer from CHD. In order to handle the imbalanced classification problem, the K-means algorithm along with Synthetic Minority Oversampling TEchnique (SMOTE) was used in this study. The empirical results of applying the four machine learning classifiers on the oversampled dataset have been very promising. The results reported using different evaluation metrics showed that SVM has achieved the highest overall prediction performance.

Keywords: Coronary heart disease; machine learning; prediction; classification

Hisham Khdair and Naga M Dasari, “Exploring Machine Learning Techniques for Coronary Heart Disease Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 12(5), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120505

@article{Khdair2021,
title = {Exploring Machine Learning Techniques for Coronary Heart Disease Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120505},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120505},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {5},
author = {Hisham Khdair and Naga M Dasari}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org