The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120556
PDF

Image-based Onion Disease (Purple Blotch) Detection using Deep Convolutional Neural Network

Author 1: Muhammad Ahmed Zaki
Author 2: Sanam Narejo
Author 3: Muhammad Ahsan
Author 4: Sammer Zai
Author 5: Muhammad Rizwan Anjum
Author 6: Naseer u Din

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 5, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Agriculture on earth is the biggest need for human sustenance. Over years, many farming methods and components have become computerized to guarantee quicker production with higher quality. Because of the enlarged demand in the farming industry, agricultural produce must be cultivated using an efficient process. Onion (Allium cepa L.) is an economically valuable crop and is the second-largest vegetable crop in the world. The spread of various diseases highly affected the production of the onion crop. One of the serious and most common diseases of onion worldwide is purple blotch. To compensate for a limited amount of training dataset of healthy and infected onion crops, the proposed method employs a pre-trained enhanced InceptionV3 model. The proposed model detects onion disease (purple blotch) from images by recognizing the abnormalities caused by the disease. The suggested approach achieves a classification accuracy of 85.47% in recognizing the disease. This research investigates a novel approach for the rapid and accurate diagnosis of plant/crop diseases, laying the theoretical foundation for the use of deep learning in agricultural information.

Keywords: Disease detection; disease classification; artificial intelligence; inceptionv3; deep convolutional neural network

Muhammad Ahmed Zaki, Sanam Narejo, Muhammad Ahsan, Sammer Zai, Muhammad Rizwan Anjum and Naseer u Din, “Image-based Onion Disease (Purple Blotch) Detection using Deep Convolutional Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 12(5), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120556

@article{Zaki2021,
title = {Image-based Onion Disease (Purple Blotch) Detection using Deep Convolutional Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120556},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120556},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {5},
author = {Muhammad Ahmed Zaki and Sanam Narejo and Muhammad Ahsan and Sammer Zai and Muhammad Rizwan Anjum and Naseer u Din}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org