The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120582
PDF

Predicting the Appropriate Mode of Childbirth using Machine Learning Algorithm

Author 1: Md. Kowsher
Author 2: Nusrat Jahan Prottasha
Author 3: Anik Tahabilder
Author 4: Kaiser Habib
Author 5: Md. Abdur-Rakib
Author 6: Md. Shameem Alam

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 5, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A woman's satisfaction with childbirth may have immediate and long-term effects on her health as well as on the relationship with her newborn child. The mode of baby delivery is genuinely vital to a delivery patient and her infant child. It might be a crucial factor for ensuring the safety of both the mother and the child. During the baby delivery, decision-making within a short time becomes very challenging for the physician. Besides, humans may make wrong decisions selecting the appropriate delivery mode of childbirth. A wrong decision increases the mother's life risk and can also be harmful to the newborn baby's health. Computer-aided decision-making can be an excellent solution to this problem. Considering this scope, we have built a supervised machine learning-based decision-making model to predict the most suitable childbirth mode that will reduce this risk. This work has applied 32 supervised classifier algorithms and 11 training methods on the real childbirth dataset from the Tarail Upazilla Health complex, Kishorganj, Bangladesh. We have also analyzed the result and compared them using various statistical parameters to determine the best-performed model. The quadratic discriminant analysis has shown the highest accuracy of 0.979992 with the F1 score of 0.979962. Using this model to decide the appropriate labor mode may significantly reduce maternal and infant health risks.

Keywords: Childbirth; labour mode; supervised machine learning; maternal death; infant

Md. Kowsher, Nusrat Jahan Prottasha, Anik Tahabilder, Kaiser Habib, Md. Abdur-Rakib and Md. Shameem Alam, “Predicting the Appropriate Mode of Childbirth using Machine Learning Algorithm” International Journal of Advanced Computer Science and Applications(IJACSA), 12(5), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120582

@article{Kowsher2021,
title = {Predicting the Appropriate Mode of Childbirth using Machine Learning Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120582},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120582},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {5},
author = {Md. Kowsher and Nusrat Jahan Prottasha and Anik Tahabilder and Kaiser Habib and Md. Abdur-Rakib and Md. Shameem Alam}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org