The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120611
PDF

Indoor Localization and Navigation based on Deep Learning using a Monocular Visual System

Author 1: Rodrigo Eduardo Arevalo Ancona
Author 2: Leonel Germán Corona Ramírez
Author 3: Oscar Octavio Gutiérrez Frías

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 6, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Now-a-days, computer systems are important for artificial vision systems to analyze the acquired data to realize crucial tasks, such as localization and navigation. For successful navigation, the robot must interpret the acquired data and determine its position to decide how to move through the environment. This paper proposes an indoor mobile robot visual-localization and navigation approach for autonomous navigation. A convolutional neural network and background modeling are used to locate the system in the environment. Object detection is based on copy-move detection, an image forensic technique, extracting features from the image to identify similar regions. An adaptive threshold is proposed due to the illumination changes. The detected object is classified to evade it using a control deep neural network. A U-Net model is implemented to track the path trajectory. The experiment results were obtained from real data, proving the efficiency of the proposed algorithm. The adaptive threshold solves illumination variation issues for object detection.

Keywords: Visual localization; visual navigation; autonomous navigation; feature extractor; object detection

Rodrigo Eduardo Arevalo Ancona, Leonel Germán Corona Ramírez and Oscar Octavio Gutiérrez Frías, “Indoor Localization and Navigation based on Deep Learning using a Monocular Visual System” International Journal of Advanced Computer Science and Applications(IJACSA), 12(6), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120611

@article{Ancona2021,
title = {Indoor Localization and Navigation based on Deep Learning using a Monocular Visual System},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120611},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120611},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {6},
author = {Rodrigo Eduardo Arevalo Ancona and Leonel Germán Corona Ramírez and Oscar Octavio Gutiérrez Frías}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org