The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120612
PDF

Firm Performance Prediction for Macroeconomic Diffusion Index using Machine Learning

Author 1: Cu Nguyen Giap
Author 2: Dao The Son
Author 3: Dinh Thi Ha
Author 4: Vu Quang Huy
Author 5: Do Thi Thu Hien
Author 6: Le Mai Trang

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 6, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Utilizing firm performance in the prediction of macroeconomic conditions is an interesting research trend with increasing momentum that supports to build nowcasting and early warning systems for macroeconomic management. Firm-level data is normally high volume, with which the traditional statistics-based prediction models are inefficient. This study, therefore, attempts to assess achievements of Machine Learning on firm performance prediction and proposes an emerging idea of applying it for macroeconomic prediction. Inspired by “micro-meso-macro” framework, this study compares different machine learning algorithms on each Vietnamese firm group categorized by the Vietnamese Industry Classification Standard. This approach figures out the most suitable classifier for each group that has specific characteristics itself. Then, selected classifiers are used to predict firms’ performance in the short term, where data was collected in wide range enterprise surveys conducted by the General Statistics Office of Vietnam. Experiments showed that Random Forest and J48 outperfomed other ML algorithms. The prediction result presents the fluctuation of firms’ performance across industries, and it supports to build a diffusion index that is a potential early warning indicator for macroeconomic management.

Keywords: Firm performance prediction; machine learning algorithms; diffusion index

Cu Nguyen Giap, Dao The Son, Dinh Thi Ha, Vu Quang Huy, Do Thi Thu Hien and Le Mai Trang, “Firm Performance Prediction for Macroeconomic Diffusion Index using Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 12(6), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120612

@article{Giap2021,
title = {Firm Performance Prediction for Macroeconomic Diffusion Index using Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120612},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120612},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {6},
author = {Cu Nguyen Giap and Dao The Son and Dinh Thi Ha and Vu Quang Huy and Do Thi Thu Hien and Le Mai Trang}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org