The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120622
PDF

DeepfakeNet, an Efficient Deepfake Detection Method

Author 1: Dafeng Gong
Author 2: Yogan Jaya Kumar
Author 3: Ong Sing Goh
Author 4: Zi Ye
Author 5: Wanle Chi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 6, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Different CNNs models do not perform well in deepfake detection in cross datasets. This paper proposes a deepfake detection model called DeepfakeNet, which consists of 20 network layers. It refers to the stacking idea of ResNet and the split-transform-merge idea of Inception to design the network block structure, That is, the block structure of ResNeXt. The study uses some data of FaceForensics++, Kaggle and TIMIT datasets, and data enhancement technology is used to expand the datasets for training and testing models. The experimental results show that, compared with the current mainstream models including VGG19, ResNet101, ResNeXt50, XceptionNet and GoogleNet, in the same dataset and preset parameters, the proposed detection model not only has higher accuracy and lower error rate in cross dataset detection, but also has a significant improvement in performance.

Keywords: DeepfakeNet; deepfake detection; data enhancement; CNNs; cross dataset

Dafeng Gong, Yogan Jaya Kumar, Ong Sing Goh, Zi Ye and Wanle Chi, “DeepfakeNet, an Efficient Deepfake Detection Method” International Journal of Advanced Computer Science and Applications(IJACSA), 12(6), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120622

@article{Gong2021,
title = {DeepfakeNet, an Efficient Deepfake Detection Method},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120622},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120622},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {6},
author = {Dafeng Gong and Yogan Jaya Kumar and Ong Sing Goh and Zi Ye and Wanle Chi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org