The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120667
PDF

Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases

Author 1: Harsha Herle
Author 2: Padmaja K V

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 6, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increase in accuracy, prediction and detection of Chronic Kidney Disease. The experimental results obtained from this work, with subjected to optimal data mining algorithms for better classification and prediction, of Chronic Kidney Disease. The result of applying relevant algorithms, like K-Nearest Neighbors, Support Vector Machine, Multi Layer Perceptron, Random Forest, are studied for both clinical and laboratory samples. Our findings show that K - Nearest Neighbour algorithm provides the best classification for clinical data and, similarly, Random Forest for laboratory samples, when compared with the performance parameters like, precision, accuracy, recall and F1 Score of other data mining analysis techniques.

Keywords: Ultrasound images; support vector machine (SVM) k-nearest algorithm (K-NN); multilayer perceptron algorithm (MLP); random forest (RF); clinical data

Harsha Herle and Padmaja K V, “Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases” International Journal of Advanced Computer Science and Applications(IJACSA), 12(6), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120667

@article{Herle2021,
title = {Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120667},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120667},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {6},
author = {Harsha Herle and Padmaja K V}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org