The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120692
PDF

Detecting COVID-19 Utilizing Probabilistic Graphical Models

Author 1: Emad Alsuwat
Author 2: Sabah Alzahrani
Author 3: Hatim Alsuwat

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 6, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Probabilistic graphical models are employed in a variety of areas such as artificial intelligence and machine learn-ing to depict causal relations among sets of random variables. In this research, we employ probabilistic graphical models in the form of Bayesian network to detect coronavirus disease 2019 (denoted as COVID-19) disease. We propose two efficient Bayesian network models that are potent in encoding causal relations among random variable, i.e., COVID-19 symptoms. The first Bayesian network model, denoted as BN1, is built depending on the acquired knowledge from medical experts. We collect data from clinics and hospitals in Saudi Arabia for our research. We name this authentic dataset DScovid. The second Bayesian network model, denoted as BN2, is learned from the real dataset DScovid depending on Chow-Liu tree approach. We also implement our proposed Bayesian network models and present our experimental results. Our results show that the proposed approaches are capable of modeling the issue of making decisions in the context of COVID-19. Moreover, our experimental results show that the two Bayesian network models we propose in this work are effective for not only extracting casual relations but also reducing uncertainty and increasing the effectiveness of causal reasoning and prediction.

Keywords: Coronavirus disease 2019; COVID-19; artificial in-telligence; machine learning; probabilistic graphical models; causal models; Bayesian networks; detection methods

Emad Alsuwat, Sabah Alzahrani and Hatim Alsuwat, “Detecting COVID-19 Utilizing Probabilistic Graphical Models” International Journal of Advanced Computer Science and Applications(IJACSA), 12(6), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120692

@article{Alsuwat2021,
title = {Detecting COVID-19 Utilizing Probabilistic Graphical Models},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120692},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120692},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {6},
author = {Emad Alsuwat and Sabah Alzahrani and Hatim Alsuwat}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org