The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120695
PDF

The Role of Data Pre-processing Techniques in Improving Machine Learning Accuracy for Predicting Coronary Heart Disease

Author 1: Osamah Sami
Author 2: Yousef Elsheikh
Author 3: Fadi Almasalha

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 6, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: These days, in light of the rapid developments, people work day and night to live at a good level. This often causes them to not pay much attention to a healthy lifestyle, such as what they eat or even what physical activities they do. These people are often the most likely to suffer from coronary heart disease. The heart is a small organ responsible for pumping oxygen-rich blood to the rest of the human body through the coronary arteries. Accordingly, any blockage or narrowing in one of these coronary arteries may cause blood not to be pumped to the heart and from it to the rest of the body, and thus cause what is known as heart attacks. From here, the importance of early prediction of coronary heart disease has emerged, as it can help these people change their lifestyle and eating habits to become healthier and thus prevent coronary heart disease and avoid death. This paper improve the accuracy of machine learning techniques in predicting coronary heart disease using data preprocessing techniques. Data preprocessing is a technique used to improve the efficiency of a machine learning model by improving the quality of the feature. The popular Framingham Heart Study dataset was used for validation purposes. The results of the research paper indicate that the use of data preprocessing techniques had a role in improving the predictive accuracy of poorly efficient classifiers, and shows satisfactory performance in determining the risk of coronary heart disease. For example, the Decision Tree classifier led to a predictive accuracy of coronary heart disease of 91.39% with an increase of 1.39% over the previous work, the Random Forest classifier led to a predictive accuracy of 92.80% with an increase of 2.7% over the previous work, the K-Nearest Neighbor classifier led to a predictive accuracy of 92.68% with an increase of 2.58% over the previous work, the Multilayer Perceptron Neural Network (MLP) classifier led to a predictive accuracy of 92.64% with an increase of 2.64% over the previous work, and the Na¨ıve Bayes classifier led to a predictive accuracy of 90.56% with an increase of 0.66% over the previous work.

Keywords: Coronary heart disease; heart; machine learning; data preprocessing; classification technique

Osamah Sami, Yousef Elsheikh and Fadi Almasalha, “The Role of Data Pre-processing Techniques in Improving Machine Learning Accuracy for Predicting Coronary Heart Disease” International Journal of Advanced Computer Science and Applications(IJACSA), 12(6), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120695

@article{Sami2021,
title = {The Role of Data Pre-processing Techniques in Improving Machine Learning Accuracy for Predicting Coronary Heart Disease},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120695},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120695},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {6},
author = {Osamah Sami and Yousef Elsheikh and Fadi Almasalha}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org