The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120725
PDF

Detecting Website Defacement Attacks using Web-page Text and Image Features

Author 1: Trong Hung Nguyen
Author 2: Xuan Dau Hoang
Author 3: Duc Dung Nguyen

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 7, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recently, web attacks in general and defacement attacks in particular to websites and web applications have been considered one of major security threats to many enterprises and organizations who provide web-based services. A defacement attack can result in a critical effect to the owner’s website, such as instant discontinuity of website operations and damage of the owner’s reputation, which in turn may lead to huge financial losses. A number of techniques, measures and tools for monitoring and detecting website defacements have been researched, developed and deployed in practice. However, some measures and techniques can only work with static web-pages while some others can work with dynamic web-pages, but they require extensive computing resources. The other issues of existing proposals are relatively low detection rate and high false alarm rate because many important elements of web-pages, such as embedded code and images are not processed. In order to address these issues, this paper proposes a combination model based on BiLSTM and EfficientNet for website defacement detection. The proposed model processes web-pages’ two important components, including the text content and page screenshot images. The combination model can work effectively with dynamic web-pages and it can produce high detection accuracy as well as low false alarm rate. Experimental results on a dataset of over 96,000 web-pages confirm that the proposed model outperforms existing models on most of measurements. The model’s overall accuracy, F1-score and false positive rate are 97.49%, 96.87% and 1.49%, respectively.

Keywords: Website defacement attacks; website defacement detection; machine learning-based website defacement detection; deep learning-based website defacement detection

Trong Hung Nguyen, Xuan Dau Hoang and Duc Dung Nguyen, “Detecting Website Defacement Attacks using Web-page Text and Image Features” International Journal of Advanced Computer Science and Applications(IJACSA), 12(7), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120725

@article{Nguyen2021,
title = {Detecting Website Defacement Attacks using Web-page Text and Image Features},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120725},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120725},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {7},
author = {Trong Hung Nguyen and Xuan Dau Hoang and Duc Dung Nguyen}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org