The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120730
PDF

LSTM, VADER and TF-IDF based Hybrid Sentiment Analysis Model

Author 1: Mohamed Chiny
Author 2: Marouane Chihab
Author 3: Omar Bencharef
Author 4: Younes Chihab

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 7, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Most sentiment analysis models that use supervised learning algorithms consume a lot of labeled data in the training phase in order to give satisfactory results. This is usually expensive and leads to high labor costs in real-world applications. This work consists in proposing a hybrid sentiment analysis model based on a Long Short-Term Memory network, a rule-based sentiment analysis lexicon and the Term Frequency-Inverse Document Frequency weighting method. These three (input) models are combined in a binary classification model. In the latter, each of these algorithms has been implemented: Logistic Regression, k-Nearest Neighbors, Random Forest, Support Vector Machine and Naive Bayes. Then, the model has been trained on a limited amount of data from the IMDB dataset. The results of the evaluation on the IMDB data show a significant improvement in the Accuracy and F1 score compared to the best scores recorded by the three input models separately. On the other hand, the proposed model was able to transfer the knowledge gained on the IMDB dataset to better handle a new data from Twitter US Airlines Sentiments dataset.

Keywords: Sentiment analysis; hybrid model; long short-term memory (LSTM); Valence Aware Dictionary and sEntiment Reasoner (VADER); term frequency-inverse document frequency (TF-IDF); classification algorithm

Mohamed Chiny, Marouane Chihab, Omar Bencharef and Younes Chihab, “LSTM, VADER and TF-IDF based Hybrid Sentiment Analysis Model” International Journal of Advanced Computer Science and Applications(IJACSA), 12(7), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120730

@article{Chiny2021,
title = {LSTM, VADER and TF-IDF based Hybrid Sentiment Analysis Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120730},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120730},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {7},
author = {Mohamed Chiny and Marouane Chihab and Omar Bencharef and Younes Chihab}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org