The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120733
PDF

Feature Engineering Framework to detect Phishing Websites using URL Analysis

Author 1: N. Swapna Goud
Author 2: Anjali Mathur

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 7, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Phishing is a most popular and dangerous cyber-attack in the world of internet. One of the most common attacks in cyber security is to access the personal information of internet users through “Phishing Website”. The major element through which hacker can do this job is through URL. Hacker creates an almost replica of original URL in which there is a very small difference, generally not revealed without keen observation. By pipelining various machine learning algorithms, the proposed model aims to recognize the important features to classify the URL using a recursive feature elimination process. In this work the data set of various URL records has been collected with 112 features including one target value. In this work a Machine Learning based model is proposed to identify the significant features, used to classify a URL, the wrapper method recursive feature elimination compares different bagging and boosting machine learning approaches .Ensemble algorithms, Bootstrap Aggregation Algorithms, Boosting and stacking algorithms are used for feature selection. The proposed work has five sections: work on the pre-processing phase, finding the relation between the features of the dataset, automatic selection of number of features using Extra Tree Classifier, comparison of the various ensemble algorithm and finally generates the best features for URL analysis. This paper, designs meta learner with XG BOOST classifier as base classifier and achieved an accuracy of 93% Out of 112 features, this model has performed an extensive comparative study on feature selection and identified 29 features as core features by performing URL analysis.

Keywords: Recursive feature elimination; principal component analysis; standard scalar transformation; eXtreme gradient boosting classifier; correlation matrix

N. Swapna Goud and Anjali Mathur, “Feature Engineering Framework to detect Phishing Websites using URL Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 12(7), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120733

@article{Goud2021,
title = {Feature Engineering Framework to detect Phishing Websites using URL Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120733},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120733},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {7},
author = {N. Swapna Goud and Anjali Mathur}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org