The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120795
PDF

Wireless Intrusion and Attack Detection for 5G Networks using Deep Learning Techniques

Author 1: Bayana Alenazi
Author 2: Hala Eldaw Idris

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 7, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A Wireless Intrusion Detection System is an important part of any system or company connected to the internet and has a wireless connection inside it because of the increasing number of internal or external attacks on the network. These WIDS systems are used to predict and detect wireless network attacks such as flooding, DoS attack, and evil- twin that badly affect system availability. Artificial intelligence (Machine Learning, Deep Learning) are popular techniques used as a good solution to build effective network intrusion detection. That's because of the ability of these algorithms to learn complicated behaviors and then use the learned system for discovering and detecting network attacks. In this work, we have performed an autoencoder with a DNN deep algorithm for protecting the companies by detecting intrusion and attacks in 5G wireless networks. We used the Aegean Wi-Fi Intrusion dataset (AWID). Our WIDS resulted in a very good performance with an accuracy of 99% for the dataset attack types: Flooding, Impersonation, and Injection.

Keywords: Wireless intrusion detection system; 5G; autoencoder; deep learning; attack detection

Bayana Alenazi and Hala Eldaw Idris, “Wireless Intrusion and Attack Detection for 5G Networks using Deep Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 12(7), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120795

@article{Alenazi2021,
title = {Wireless Intrusion and Attack Detection for 5G Networks using Deep Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120795},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120795},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {7},
author = {Bayana Alenazi and Hala Eldaw Idris}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org