The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120812
PDF

Mobile Malware Classification for iOS Inspired by Phylogenetics

Author 1: Muhammad Afif Husainiamer
Author 2: Madihah Mohd Saudi
Author 3: Azuan Ahmad
Author 4: Amirul Syauqi Mohamad Syafiq

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 8, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Cyber-attacks such as ransomware, data breaches, and phishing triggered by malware, especially for iOS (iPhone operating system) platforms, are increasing. Yet not much works on malware detection for the iOS platform have been done compared to the Android platform. Hence, this paper presents an iOS malware classification inspired by phylogenetics. It consists of mobile behaviour, exploits, and surveillance features. The new iOS classification helps to identify, detect, and predict any new malware variants. The experiment was conducted by using hybrid analysis, with twelve (12) malwares datasets from the Contagio Mobile website. As a result, twenty-nine (29) new classifications have been developed. One hundred (100) anonymous mobile applications (50 from the Apple Store and 50 from iOS Ninja) have been used for evaluation. Based on the evaluation conducted, 13% of the mobile applications matched with the developed classifications. In the future, this work can be used as guidance for other researchers with the same interest.

Keywords: iOS; mobile malware; reverse engineering; exploitation; phylogenetic

Muhammad Afif Husainiamer, Madihah Mohd Saudi, Azuan Ahmad and Amirul Syauqi Mohamad Syafiq, “Mobile Malware Classification for iOS Inspired by Phylogenetics” International Journal of Advanced Computer Science and Applications(IJACSA), 12(8), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120812

@article{Husainiamer2021,
title = {Mobile Malware Classification for iOS Inspired by Phylogenetics},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120812},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120812},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {8},
author = {Muhammad Afif Husainiamer and Madihah Mohd Saudi and Azuan Ahmad and Amirul Syauqi Mohamad Syafiq}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org