The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120813
PDF

ANNMDD: Strength of Artificial Neural Network Types for Medical Diagnosis Domain

Author 1: Ahmed Hamza Osman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 8, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The abundance of medical evidence in health institutions necessitates the creation of effective data collection methods for extracting valuable information. For several years, scholars focused on the use of computational techniques and data processing techniques in order to enhance the study of broad historical datasets. There is a deficiency to investigate the collected data of health disease in the data sources such as COVID-19, Chronic Kidney, Epileptic Seizure, Parkinson, Hard diseases, Hepatitis, Breast Cancer and Diabetes, where millions of people are killed in the world by these diseases. This research aims to investigate the neural network algorithms for different types of medical diseases in order to select the best type of neural network suitable for each disease. The data mining process has been applied to investigate the mentioned medical disease datasets. The related works and literature review of machine learning in the medical domain were studied in the initial stage of this research. Then, the experiments behind the initial stage have been designed with six neural network algorithm styles which are Multiple, Radial Based Function Network (RBFN), Dynamic, Quick and Prune algorithms. The extracted results for each algorithm have been analyzed and compared with each other to select the perfect neural network algorithm for each disease. T-test statistical significance test has been applied as one of the investigation strategies for the NN optimal selection. Our findings highlighted the strong side of the Multiple NN algorithm in terms of training and testing phases in the medical domain.

Keywords: Medical data; neural network algorithm; multiple; radial based function network; dynamic; quick; prune; accuracy

Ahmed Hamza Osman, “ANNMDD: Strength of Artificial Neural Network Types for Medical Diagnosis Domain” International Journal of Advanced Computer Science and Applications(IJACSA), 12(8), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120813

@article{Osman2021,
title = {ANNMDD: Strength of Artificial Neural Network Types for Medical Diagnosis Domain},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120813},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120813},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {8},
author = {Ahmed Hamza Osman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org