The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120815
PDF

Higher Order Statistics and Phase Synchronization as Features in a Motor Imagery Paradigm

Author 1: Oana-Diana Hrisca-Eva
Author 2: Madalina-Giorgiana Murariu
Author 3: Anca Mihela Lazar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 8, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The paper proposes an approach based on higher order statistics and phase synchronization for detection and classification of relevant features in electroencephalographic (EEG) signals recorded during the subjects are performing motor tasks. The method was tested on two different datasets and the performance was evaluated using k nearest neighbor classifier. The results (classification rates higher than 90%) have shown that the method can be used for discriminating right and left motor imagery tasks as an offline analysis for EEG in a brain computer interface system.

Keywords: Brain computer interface; motor imagery; higher order statistics; phase synchronization; EEG

Oana-Diana Hrisca-Eva, Madalina-Giorgiana Murariu and Anca Mihela Lazar, “Higher Order Statistics and Phase Synchronization as Features in a Motor Imagery Paradigm” International Journal of Advanced Computer Science and Applications(IJACSA), 12(8), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120815

@article{Hrisca-Eva2021,
title = {Higher Order Statistics and Phase Synchronization as Features in a Motor Imagery Paradigm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120815},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120815},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {8},
author = {Oana-Diana Hrisca-Eva and Madalina-Giorgiana Murariu and Anca Mihela Lazar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org