The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120845
PDF

The Novel CPW 2.4 GHz Antenna with Parallel Hybrid Electromagnetic Solar for IoT Energy Harvesting and Wireless Sensors

Author 1: Irfan Mujahidin
Author 2: Akio Kitagawa

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 8, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The design and implementation's novelty simultaneously utilizes the antenna's frequency, polarization, and feed structure to maximize the harvested RF energy and become a microstrip communication circuit for wireless sensor or communication systems in IoT devices. In addition, the optimization of the parallel circuit configuration has a voltage doubler model with an integrated parallel system and thin-film solar cells. Implementation of the antenna structure has two-line feeds in one antenna. Usage both feeds have the same function as CPW circular polarization. Another advantage is that there is no miss-configuration when installing the port exchanges when using both output ports simultaneously. The 2-port antenna has an area of 1/2 per port (where accessible wavelengths work well at the 2.4 GHz frequency). It has been shown to achieve a relatively narrow bandwidth of 86.5 percent covering WiFi frequency band networks and IoT communications. It does not require additional filters and analog matching circuits that cause power loss in the transmission process in parallel voltage doubler circuits. Integrating a reflector on the CPW antenna with two ports for placement of thin-film solar cells provides antenna gain of up to 8.2 dB. It provides a wide beam range with directional radiation. Using a multi-stage parallel to increase voltage output and integrated with a thin-film solar cell converter proves efficient in the 2.4 GHz frequency band. When the transmission power density is -16.15 dBm with a tolerance of 0.023, the novel energy harvester configuration circuit can produce an output voltage of 54 mV dc without adding solar cell energy. And Integrated thin-film solar cell a light beam of 300 lux in the radiation beam area of -16.15 dBm, the energy obtained has a value of 1,74467V. It also shows that the implementation of this configuration can produce an optimal dc output voltage in the actual indoor and outdoor ambient settings. The optimization of antenna implementation and the communication process with Multiple signal classifications improves the configuration of antennas that are close to each other and have identical phase outputs. It is instrumental and efficient when applied to IoT devices.

Keywords: Double CPW antenna; energy harvesting; wireless sensors; IoT communications

Irfan Mujahidin and Akio Kitagawa, “The Novel CPW 2.4 GHz Antenna with Parallel Hybrid Electromagnetic Solar for IoT Energy Harvesting and Wireless Sensors” International Journal of Advanced Computer Science and Applications(IJACSA), 12(8), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120845

@article{Mujahidin2021,
title = {The Novel CPW 2.4 GHz Antenna with Parallel Hybrid Electromagnetic Solar for IoT Energy Harvesting and Wireless Sensors},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120845},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120845},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {8},
author = {Irfan Mujahidin and Akio Kitagawa}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org