The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120882
PDF

Automated Pavement Distress Detection, Classification and Measurement: A Review

Author 1: Brahim Benmhahe
Author 2: Jihane Alami Chentoufi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 8, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Road surface distress is an unavoidable situation due to age, vehicles overloading, temperature changes, etc. In the beginning, pavement maintenance actions took only place after having too much pavement damage, which leads to costly corrective actions. Therefore, scheduled road surface inspections can extend service life while guaranteeing users security and comfort. Traditional manual and visual inspections don’t meet the nowadays criteria, in addition to a relatively high time volume consumption. Smart City pavement management preventive approach requires accurate and scalable data to deduce significant indicators and plan efficient maintenance programs. However, the quality of data depends on sensors used and conditions during scanning. Many studies focused on different sensors, Machine Learning algorithms and Deep Neural Networks tried to find a sustainable solution. Besides all these studies, pavement distress measurement stills a challenge in Smarts Cities because distress detection is not enough to decide on maintenance actions required. Damages localization, dimensions and future development should be highly detected on real-time. This paper summarizes the state-of-the-art methods and technologies used in recent years in pavement distress detection, classification and measurement. The aim is to evaluate current methods and highlight their limitations, to lay out the blueprint for future researches. PMS (Pavement Management System) in Smarts Cities requires an automated pavement distress monitoring and maintenance with high accuracy for large road networks.

Keywords: Automated pavement distress detection; smarts cities; pavement management system; machine learning; deep neural networks

Brahim Benmhahe and Jihane Alami Chentoufi, “Automated Pavement Distress Detection, Classification and Measurement: A Review” International Journal of Advanced Computer Science and Applications(IJACSA), 12(8), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120882

@article{Benmhahe2021,
title = {Automated Pavement Distress Detection, Classification and Measurement: A Review},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120882},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120882},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {8},
author = {Brahim Benmhahe and Jihane Alami Chentoufi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org