The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Vietnamese Sentence Paraphrase Identification using Pre-trained Model and Linguistic Knowledge

Author 1: Dien Dinh
Author 2: Nguyen Le Thanh

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2021.0120891

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 8, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The paraphrase identification task identifies whether two text segments share the same meaning, thereby playing a crucial role in various applications, such as computer-assisted translation, question answering, machine translation, etc. Although the literature on paraphrase identification in English and other popular languages is vast and growing, the research on this topic in Vietnamese remains relatively untapped. In this paper, we propose a novel method to classify Vietnamese sentence paraphrases, which deploys both the pre-trained model to exploit the semantic context and linguistic knowledge to provide further information in the identification process. Two branches of neural networks built in the Siamese architecture are also responsible for learning the differences among the sentence representations. To evaluate the proposed method, we present experiments on two existing Vietnamese sentence paraphrase corpora. The results show that for the same corpora, our method using the PhoBERT as a feature vector yields 94.97% F1-score on the VnPara corpus and 93.49% F1-score on the VNPC corpus. They are better than the results of the Siamese LSTM method and the pre-trained models.

Keywords: Paraphrase identification; Vietnamese; pre-trained model; linguistics; neural networks

Dien Dinh and Nguyen Le Thanh, “Vietnamese Sentence Paraphrase Identification using Pre-trained Model and Linguistic Knowledge” International Journal of Advanced Computer Science and Applications(IJACSA), 12(8), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120891

@article{Dinh2021,
title = {Vietnamese Sentence Paraphrase Identification using Pre-trained Model and Linguistic Knowledge},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120891},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120891},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {8},
author = {Dien Dinh and Nguyen Le Thanh}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org