The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120910
PDF

Empirical Analysis of Feature Points Extraction Techniques for Space Applications

Author 1: Janhavi H. Borse
Author 2: Dipti D. Patil

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 9, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recently, space research advancements have widened the scope of many vision-based techniques. Computer vision techniques with manifold objectives require that valuable features are extracted from input data. This paper attempts to analyze known feature extraction techniques empirically; Scale Invariant Feature Transform (SIFT), Speeded up robust features (SURF), Oriented fast and Rotated Brief (ORB), and Convolutional Neural Network (CNN). A methodology for autonomously extracting features using CNN is analyzed in more detail. The autonomous process demonstrates the use of convolutional neural networks for feature extraction. Those techniques are studied and evaluated empirically on lunar satellite images. For analysis, a dataset containing different affine transformations of a video frame is generated from a sample lunar descent video. The nearest neighbor algorithm is then applied for feature matching. For an unbiased evaluation, a similar process of feature matching is repeated for all the models. Well-known metrics like repeatability and matching scores are employed to validate the studied techniques. The results show that the CNN features showed much better computational efficiency and stable performance concerning matching accuracy for lunar images than other studied algorithms.

Keywords: Artificial intelligence; convolutional neural network; computer vision; feature extraction; machine learning; satellite images; space research

Janhavi H. Borse and Dipti D. Patil, “Empirical Analysis of Feature Points Extraction Techniques for Space Applications” International Journal of Advanced Computer Science and Applications(IJACSA), 12(9), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120910

@article{Borse2021,
title = {Empirical Analysis of Feature Points Extraction Techniques for Space Applications},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120910},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120910},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {9},
author = {Janhavi H. Borse and Dipti D. Patil}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org