The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120923
PDF

A PSNR Review of ESTARFM Cloud Removal Method with Sentinel 2 and Landsat 8 Combination

Author 1: Dietrich G. P. Tarigan
Author 2: Sani M. Isa

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 9, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Remote sensing images with high spatial and temporal resolution (HSHT) for GIS land use monitoring are crucial data sources. When trying to get HSHT resolution images, cloud cover is a typical problem. The effects of cloud cover reduction using the ESTARFM, one of spatiotemporal image fusion technique, is examined in this study. By merging two satellite photos of low-resolution and medium-resolution images, the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Method (ESTARFM), predicts the reflectance value of the cloud cover region. ESTARFM, on the other hand, employs both medium and high-resolution satellite pictures in this study. Using Sentinel 2 and Landsat 8, the Peak Signal Noise Ratio (PSNR) statistical methods are then utilized to evaluate the ESTARFM. The PSNR explain ESTARFM cloud removal performance by comparing the level of similarity of the reference image with the reconstructed image. In remote sensing, this hypothesis was established to get high-quality HSHT pictures. Based on this study, Landsat 8 images that have been cloud removed with ESTARFM may be classed as good. The PSNR value of 21.8 to 26 backs this up, and the ESTARFM result seems good on visual examination.

Keywords: Cloud removal; RS-Remote sensing; PSNR-Peak signal noise ratio; GIS-Geographic information system; spatiotemporal image fusion

Dietrich G. P. Tarigan and Sani M. Isa, “A PSNR Review of ESTARFM Cloud Removal Method with Sentinel 2 and Landsat 8 Combination” International Journal of Advanced Computer Science and Applications(IJACSA), 12(9), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120923

@article{Tarigan2021,
title = {A PSNR Review of ESTARFM Cloud Removal Method with Sentinel 2 and Landsat 8 Combination},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120923},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120923},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {9},
author = {Dietrich G. P. Tarigan and Sani M. Isa}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org