The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120943
PDF

Hybrid Decision Support System Framework for Leaf Image Analysis to Improve Crop Productivity

Author 1: Meeradevi
Author 2: Monica R Mundada

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 9, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Crop disease is one of the major problems with agriculture in India. Identifying the disease and classifying the type of disease is most important which can be made possible using the deep learning technique. To perform this verified dataset is required which consists of healthy and disease leaf images of all crops. The proposed model uses a hybrid approach which integrates VGG16 classifier with an attention mechanism, transfer learning approach and dropout operation. The proposed model uses a rice disease dataset and using the proposed approach it achieves an train accuracy of 96.45 percent and train loss 0.09 and validation loss of 0.44. The dataset is collected from the plant village project for rice leaf which consists of 4955 images which include Brown Spot, Healthy, Hipsa, and Leaf Blast type of images. The proposed model use attention mechanism that focuses mainly on the part of the image rather than the whole part of the image using a glimpse ratio of 3:1. The traditional method of detecting crop diseases needs high experience and knowledge of experts in the field which is time consuming, ineffective, and high cost. In this study, Deep Convolutional Neural Networks (DCNN) and Transfer Learning with Attention models are used to detect diseases associated with rice plants without overfitting the model.

Keywords: Deep learning; activation function; attention mechanism; dropout operation; transfer learning; VGG16

Meeradevi and Monica R Mundada, “Hybrid Decision Support System Framework for Leaf Image Analysis to Improve Crop Productivity” International Journal of Advanced Computer Science and Applications(IJACSA), 12(9), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120943

@article{2021,
title = {Hybrid Decision Support System Framework for Leaf Image Analysis to Improve Crop Productivity},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120943},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120943},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {9},
author = {Meeradevi and Monica R Mundada}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org