The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120944
PDF

Weighted Clustering for Deep Learning Approach in Heart Disease Diagnosis

Author 1: BhandareTrupti Vasantrao
Author 2: Selvarani Rangasamy

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 9, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: An approach for heart diagnosis based on weighted clustering is presented in this paper. The existing heart diagnosis approach develops a decision based on correlation of feature vector of a querying sample with available knowledge to the system. With increase in the learning data to the system the search overhead increases. This tends to delay in decision making. The linear mapping is improved by the clustering process of large database information. However, the issue of data clustering is observed to be limited with increase in training information and characteristic of learning feature. To overcome the issue of accurate clustering, a weighted clustering approach based on gain factor is proposed. This approach updates the cluster information based on dual factor monitoring of distance and gain parameter. The presented approach illustrates an improvement in the mining performance in terms of accuracy, sensitivity and recall rate.

Keywords: Learning approach; weighted clustering; heart disease diagnosis; gain factor

BhandareTrupti Vasantrao and Selvarani Rangasamy, “Weighted Clustering for Deep Learning Approach in Heart Disease Diagnosis” International Journal of Advanced Computer Science and Applications(IJACSA), 12(9), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120944

@article{Vasantrao2021,
title = {Weighted Clustering for Deep Learning Approach in Heart Disease Diagnosis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120944},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120944},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {9},
author = {BhandareTrupti Vasantrao and Selvarani Rangasamy}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org