The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120981
PDF

Carrot Disease Recognition using Deep Learning Approach for Sustainable Agriculture

Author 1: Naimur Rashid Methun
Author 2: Rumana Yasmin
Author 3: Nasima Begum
Author 4: Aditya Rajbongshi
Author 5: Md. Ezharul Islam

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 9, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Carrot is a fast-growing and nutritious vegetable cultivated throughout the world for its edible roots. The farmers are still learning the scientific methods of carrot production worldwide. For the production of good quality carrots, modern technology is not being used to its fullest to detect carrot vegetable diseases in the farms. As a result, the farmers face difficulties now and then in continuous monitoring and detecting defects in carrot crops. Hence, this paper proposes an efficient carrot disease identification and classification method using a deep learning approach, especially Convolutional Neural Network (CNN). In this research, five different carrot diseases including healthy carrots have been examined and experimented with four different pretrained models of CNN architecture, i.e., VGG16, VGG19, MobileNet, and Inception v3. Among the four models, the Inception v3 model is selected as an efficient pretrained CNN architecture to build an effective and robust system. The Inception v3 based system proposed here takes carrot images as input and examines whether they are healthy or infected, and provides output accordingly. To train and evaluate the system, a robust dataset is used, which consists of original and synthetic data. In the Fully Connected Neural Network (FCNN), dropout is used to solve the problem of overfitting as well as to improve the accuracy of the system. The accuracy achieved from the method which uses Inception v3 is 97.4%, which is undoubtedly helpful for the farmers to identify carrot disease and maximize their benefits to establish sustainable agriculture.

Keywords: Deep learning; convolutional neural network; In-ception v3; carrot disease recognition

Naimur Rashid Methun, Rumana Yasmin, Nasima Begum, Aditya Rajbongshi and Md. Ezharul Islam, “Carrot Disease Recognition using Deep Learning Approach for Sustainable Agriculture” International Journal of Advanced Computer Science and Applications(IJACSA), 12(9), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120981

@article{Methun2021,
title = {Carrot Disease Recognition using Deep Learning Approach for Sustainable Agriculture},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120981},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120981},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {9},
author = {Naimur Rashid Methun and Rumana Yasmin and Nasima Begum and Aditya Rajbongshi and Md. Ezharul Islam}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org