The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130118
PDF

Automatic Fake News Detection based on Deep Learning, FastText and News Title

Author 1: Youssef Taher
Author 2: Adelmoutalib Moussaoui
Author 3: Fouad Moussaoui

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 1, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: As a range of daily phenomena, Fake News is quickly becoming a longstanding issue affecting individuals, public and private sectors. This major challenge of the connected and modern world can cause many severe and real damages such as manipulating public opinion, damaging reputations, contributing to the loss in stock market value and representing many risks to the global health. With the fast spreading of online misinformation, checking manually Fake News becomes ineffective solution (not obvious, difficult and takes a long time). The improvement of Deep Learning Networks (DLN) can support with high degree of accuracy and efficiency the classical processes of Fake News spotting. One of the keys improvement strategies are optimizing the Word Embedding Layer (WEL) and finding relevant Fake News predicting features. In this context, and based on six DLN architectures, FastText process as WEL and Inverted Pyramid as News Articles Pattern (IPP), the present paper focuses on the assessment of the first news article feature that is hypothesized as affecting the performances of fake news predicting: News Title. By assessing the impact that the Embedding Vector Size (EVS), Window Size (WS) and Minimum Frequency of Words (MFW) in News Titles corpus can have on DLN, the experiments carried out in this paper showed that the News Title feature and FastText process can have a significant improvement on DLN fake news detection with accuracy rates exceeding 98%.

Keywords: Fake news; automatic detection; deep learning; FastText; news title

Youssef Taher, Adelmoutalib Moussaoui and Fouad Moussaoui, “Automatic Fake News Detection based on Deep Learning, FastText and News Title” International Journal of Advanced Computer Science and Applications(IJACSA), 13(1), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130118

@article{Taher2022,
title = {Automatic Fake News Detection based on Deep Learning, FastText and News Title},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130118},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130118},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {1},
author = {Youssef Taher and Adelmoutalib Moussaoui and Fouad Moussaoui}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org