The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130126
PDF

Ambulatory Monitoring of Maternal and Fetal using Deep Convolution Generative Adversarial Network for Smart Health Care IoT System

Author 1: S. Venkatasubramanian

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 1, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the increase in the number of high-risk pregnancies, it is important to monitor the health of the fetus during pregnancy. Major advances in the field of study have led to the development of intelligent automation systems that enable clinicians to predict and determine the monitoring of Maternal and Fetal Health (MFH) with the aid of the Internet of Things (IoT). This paper provides a solution for monitoring high-risk MHF based on IoT sensors, data analysis-based feature extraction, and an intelligent system based on the Deep Convolutional Generative Adversarial Network (DCGAN) classifier. Various clinical indicators such as heart rate of MF, oxygen saturation, blood pressure, and uterine tonus of maternal are monitored continuously. Many data sources produce large amounts of data in different formats and ratios. The smart health analytics system proposes to extract several features and measure linear and non-linear dimensions. Finally, a DCGAN has been proposed as a predictive mechanism for the simultaneous classification of MFH status by considering more than four possible outcomes. The results showed that the proposed system for mobile monitoring between MFH is a practical solution based on the IoT.

Keywords: Deep convolutional generative adversarial network; fetal health monitoring; high-risk pregnancies; internet of things; smart healthcare system

S. Venkatasubramanian, “Ambulatory Monitoring of Maternal and Fetal using Deep Convolution Generative Adversarial Network for Smart Health Care IoT System” International Journal of Advanced Computer Science and Applications(IJACSA), 13(1), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130126

@article{Venkatasubramanian2022,
title = {Ambulatory Monitoring of Maternal and Fetal using Deep Convolution Generative Adversarial Network for Smart Health Care IoT System},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130126},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130126},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {1},
author = {S. Venkatasubramanian}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org