The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130147
PDF

Development of an Efficient Electricity Consumption Prediction Model using Machine Learning Techniques

Author 1: Ghaidaa Hamad Alraddadi
Author 2: Mohamed Tahar Ben Othman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 1, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electricity consumption has continued to go up rapidly to follow the rapid growth of the economy. Therefore, detecting anomalies in buildings' energy data is considered one of the most essential techniques to detect anomalous events in buildings. This paper aims to optimize the electricity consumption in households by forecasting the consumption of these households and, consequently, identifying the anomalies. Further, as the used dataset is huge and published publicly, many research used part of it based on their needs. In this paper, the dataset is grouped as daily consumption and monthly consumption to compare the network topologies of all other works that used the same dataset with the selected part. The proposed methodology will depend basically on long short-term memory (LSTM) because it is powerful, flexible, and can deal with complex multi-dimensional time-series data. The results of the model can accurately predict the future consumption of individual households in a daily or monthly consumption base, even if the household was not included in the original training set. The proposed daily model achieves Root Mean Square Error (RMSE) value of 0.362 and mean absolute error (MAE) of 19.7%, while the monthly model achieves an RMSE value of 0.376 and MAE of 17.8%. Our model got the lowest accuracy result when compared with other compared network topologies. The lowest RMSE achieved from other topologies is 0.37 and the lowest MAE is 18% where our model achieved RMSE of 0.362 and MAE of 17.8%. Further, the model can detect the anomalies efficiently in both daily electricity consumption data and monthly electricity consumption data. However, the daily electricity consumption readings are way better to detect anomalies than the monthly electricity consumption readings because of the different picks that appear in the daily consumption data.

Keywords: Anomalies detection; deep learning; electricity consumption forecasting; LSTM

Ghaidaa Hamad Alraddadi and Mohamed Tahar Ben Othman, “Development of an Efficient Electricity Consumption Prediction Model using Machine Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 13(1), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130147

@article{Alraddadi2022,
title = {Development of an Efficient Electricity Consumption Prediction Model using Machine Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130147},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130147},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {1},
author = {Ghaidaa Hamad Alraddadi and Mohamed Tahar Ben Othman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org