The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130156
PDF

A Regression Model to Predict Key Performance Indicators in Higher Education Enrollments

Author 1: Ashraf Abdelhadi
Author 2: Suhaila Zainudin
Author 3: Nor Samsiah Sani

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 1, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Key Performance Indicators (KPIs) are essential factors for the success of an organization. KPIs measure the current performance and identify the ongoing progress for specified business objectives. The Ministry of Higher Education (MoHE) in Palestine used established formulas to predict the KPI. These KPIs are vital for charting the organization aims. This study applies regression models for student enrollment data sets to predict accurate KPIs that can be used and adapted for any higher education system. The predictive engine will determine the KPI based on linear regression techniques such as Lasso, Elastic Net, and non-linear regression such as Support Vector Regression (SVR), and K-Nearest Neighbor (KNN). The Ministry of Higher Education (MoHE) in Palestine provided the datasets related to enrollments and graduations data for different Higher Education Institutions (HEIs). The regression algorithms were evaluated by mean absolute error, mean square error (MSE), root mean square error (RMSE) and the R Squared. The experiment demonstrates that the 40% training with 60% testing splitting using linear regression shows the best result.

Keywords: Data mining; KPI; regression; higher education; prediction model

Ashraf Abdelhadi, Suhaila Zainudin and Nor Samsiah Sani, “A Regression Model to Predict Key Performance Indicators in Higher Education Enrollments” International Journal of Advanced Computer Science and Applications(IJACSA), 13(1), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130156

@article{Abdelhadi2022,
title = {A Regression Model to Predict Key Performance Indicators in Higher Education Enrollments},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130156},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130156},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {1},
author = {Ashraf Abdelhadi and Suhaila Zainudin and Nor Samsiah Sani}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org