The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130174
PDF

An Early Intervention Technique for At-Risk Prediction of Higher Education Students in Cloud-based Virtual Learning Environment using Classification Algorithms during COVID-19

Author 1: Arul Leena Rose. P. J
Author 2: Ananthi Claral Mary.T

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 1, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Higher Education is considered vital for societal development. It leads to many benefits including a prosperous career and financial security. Virtual learning through cloud platforms has become fashionable as it is expediency and flexible to students. New student learning models and prediction outcomes can be developed by using these platforms. The appliance of machine learning techniques in identifying students at-risk is a challenging and concerning factor in virtual learning environment. When there are few students, it is easy for identification, but it is impractical on larger number of students. This study included 530 higher education students from various regions in India and the outcomes generated from online survey data were analyzed. The main objective of this research is to predict early identification of students at-risk in cloud virtual learning environment by analyzing their demographic characteristics, previous academic achievement, learning behavior, device type, mode of access, connectivity, self-efficacy, cloud platform usage, readiness and effectiveness in participating online sessions using four machine learning algorithms namely K Nearest Neighbor (KNN), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Random Forest (RF). Predictive system helps to provide solutions to low performance students. It has been implemented on real data of students from higher education who perform various courses in virtual learning environment. Deep analysis is performed to estimate the at-risk students. The experimental results exhibited that random forest achieved higher accuracy of 88.61% compared to other algorithms.

Keywords: Prediction; at-risk; machine learning; virtual learning environment; cloud platforms; classification; COVID-19; random forest; student academic performance

Arul Leena Rose. P. J and Ananthi Claral Mary.T, “An Early Intervention Technique for At-Risk Prediction of Higher Education Students in Cloud-based Virtual Learning Environment using Classification Algorithms during COVID-19” International Journal of Advanced Computer Science and Applications(IJACSA), 13(1), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130174

@article{J2022,
title = {An Early Intervention Technique for At-Risk Prediction of Higher Education Students in Cloud-based Virtual Learning Environment using Classification Algorithms during COVID-19},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130174},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130174},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {1},
author = {Arul Leena Rose. P. J and Ananthi Claral Mary.T}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org