The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130177
PDF

Identification of Coronary Heart Disease through Iris using Gray Level Co-occurrence Matrix and Support Vector Machine Classification

Author 1: Vincentius Abdi Gunawan
Author 2: Leonardus Sandy Ade Putra
Author 3: Fitri Imansyah
Author 4: Eka Kusumawardhani

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 1, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Now-a-days, coronary heart disease is one of the deadliest diseases in the world. An unfavorable lifestyle, lack of physical activity, and consuming tobacco are the causes of coronary heart disease aside from genetic inheritance. Sometimes the patient does not know whether he has abnormalities in heart function or not. Therefore, this study proposes a system that can detect heart abnormalities through the iris, known as the Iridology method. The system is designed automatically in the iris detection to the classification results. Feature extraction using five characteristics is applied to the Gray Level Co-occurrence Matrix (GLCM) method. The classification process uses the Support Vector Machine (SVM) with linear kernel variation, Polynomial, and Gaussian to obtain the best accuracy in the system. From the system simulation results, the use of the Gaussian kernel can be relied on in the classification of iris conditions with an accuracy rate of 91%, then the Polynomial kernel accuracy reaches 89%, and the linear kernel accuracy reaches 87%. This study has succeeded in detecting heart conditions through the iris by dividing the iris into normal iris and abnormal iris.

Keywords: Iris; iridology; coronary heart; circle hough transform; gray level co-occurrence matrix; support vector machine

Vincentius Abdi Gunawan, Leonardus Sandy Ade Putra, Fitri Imansyah and Eka Kusumawardhani, “Identification of Coronary Heart Disease through Iris using Gray Level Co-occurrence Matrix and Support Vector Machine Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 13(1), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130177

@article{Gunawan2022,
title = {Identification of Coronary Heart Disease through Iris using Gray Level Co-occurrence Matrix and Support Vector Machine Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130177},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130177},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {1},
author = {Vincentius Abdi Gunawan and Leonardus Sandy Ade Putra and Fitri Imansyah and Eka Kusumawardhani}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org