The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130193
PDF

Transfer Learning based Performance Comparison of the Pre-Trained Deep Neural Networks

Author 1: Jayapalan Senthil Kumar
Author 2: Syahid Anuar
Author 3: Noor Hafizah Hassan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 1, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Deep learning has grown tremendously in recent years, having a substantial impact on practically every discipline. Transfer learning allows us to transfer the knowledge of a model that has been formerly trained for a particular task to a new model that is attempting to solve a related but not identical problem. Specific layers of a pre-trained model must be retrained while the others must remain unmodified to adapt it to a new task effectively. There are typical issues in selecting the layers to be enabled for training and layers to be frozen, setting hyper-parameter values, and all these concerns have a substantial effect on training capabilities as well as classification performance. The principal aim of this study is to compare the network performance of the selected pre-trained models based on transfer learning to help the selection of a suitable model for image classifica-tion. To accomplish the goal, we examined the performance of five pre-trained networks, such as SqueezeNet, GoogleNet, ShuffleNet, Darknet-53, and Inception-V3 with different Epochs, Learning Rates, and Mini-Batch Sizes to compare and evaluate the network’s performance using confusion matrix. Based on the experimental findings, Inception-V3 has achieved the highest accuracy of 96.98%, as well as other evaluation metrics, including precision, sensitivity, specificity, and f1-score of 92.63%, 92.46%, 98.12%, and 92.49%, respectively.

Keywords: Transfer learning; deep neural networks; image classification; Convolutional Neural Network (CNN) models

Jayapalan Senthil Kumar, Syahid Anuar and Noor Hafizah Hassan, “Transfer Learning based Performance Comparison of the Pre-Trained Deep Neural Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 13(1), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130193

@article{Kumar2022,
title = {Transfer Learning based Performance Comparison of the Pre-Trained Deep Neural Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130193},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130193},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {1},
author = {Jayapalan Senthil Kumar and Syahid Anuar and Noor Hafizah Hassan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org