The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131022
PDF

Deep Learning Model for Predicting Consumers’ Interests of IoT Recommendation System

Author 1: Talal H. Noor
Author 2: Abdulqader M. Almars
Author 3: El-Sayed Atlam
Author 4: Ayman Noor

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 10, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This electronic the Internet of Things (IoT) technology has contributed to several domains such as health, energy, education, transportation, industry, and other domains. However, with the increased number of IoT solutions worldwide, IoT consumers find it difficult to choose the technology that suits their needs. This article describes the design and implementation of an IoT recommendation system based on consumer interests. In particular, the knowledge-based IoT recommendation system exploits a Service Oriented Architecture (SOA) where IoT device and service providers use a registry to advertise their products. Moreover, the proposed model uses a Long Short-term Memory (LSTM) deep learning technique to predict the consumer's interest based on the consumer's data. Then the recommendation system do the mapping between the consumers and the related IoT devices based on the consumer interests. The proposed Knowledge-based IoT recommendation system has been validated using a real-world IoT dataset collected from Twitter Application Programming Interface (API) that include more than 15,791 tweets. Overall the results of our experiment are promising in terms of precision and recall. Furthermore, the proposed model achieved the highest accuracy score compared with other state-of-the-art methods.

Keywords: Internet of things; IoT; knowledge-based; recommendation system; service-oriented architecture; SOA; long short-term memory; LSTM; deep learning

Talal H. Noor, Abdulqader M. Almars, El-Sayed Atlam and Ayman Noor, “Deep Learning Model for Predicting Consumers’ Interests of IoT Recommendation System” International Journal of Advanced Computer Science and Applications(IJACSA), 13(10), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131022

@article{Noor2022,
title = {Deep Learning Model for Predicting Consumers’ Interests of IoT Recommendation System},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131022},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131022},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {10},
author = {Talal H. Noor and Abdulqader M. Almars and El-Sayed Atlam and Ayman Noor}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org