The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131023
PDF

A Machine Learning Model for Personalized Tariff Plan based on Customer’s Behavior in the Telecom Industry

Author 1: Lewlisa Saha
Author 2: Hrudaya Kumar Tripathy
Author 3: Fatma Masmoudi
Author 4: Tarek Gaber

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 10, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the telecommunication industry, being able to predict customers’ behavioral pattern to successfully design and recommend a suitable tariff plan is the ultimate target. The behavioral pattern has a vital connection with the customers’ demographic background. Different researches have been done based on hypothesis testing, regression analysis, and conjoint analysis to determine the interdependencies among them and the effects on the customers’ behavioral needs. This has presented us with ample scope for research using numerous classification-based techniques. This work proposes a model to predict customer’s behavioral pattern by using their demographic data. This model was built after investigating various types of classification-based machine learning techniques including the traditional ones like decision tree, k-nearest neighbor, logistic regression, and artificial neural networks along with some ensemble techniques such as random forest, adaboost, gradient boosting machine, extreme gradient boosting, bagging, and stacking. They are applied to a dataset collected using a questionnaire in India. Among the traditional classifiers, decision tree gave the best result of 81% accuracy and random forest showed the best result among the ensemble learning techniques with an accuracy of 83%. The proposed model has shown a very positive outcome in predicting the customers’ behavioral pattern.

Keywords: Customer behavior; data analytics; ensemble learning; machine learning; telecommunication industry

Lewlisa Saha, Hrudaya Kumar Tripathy, Fatma Masmoudi and Tarek Gaber, “A Machine Learning Model for Personalized Tariff Plan based on Customer’s Behavior in the Telecom Industry” International Journal of Advanced Computer Science and Applications(IJACSA), 13(10), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131023

@article{Saha2022,
title = {A Machine Learning Model for Personalized Tariff Plan based on Customer’s Behavior in the Telecom Industry},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131023},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131023},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {10},
author = {Lewlisa Saha and Hrudaya Kumar Tripathy and Fatma Masmoudi and Tarek Gaber}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org