The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131027
PDF

Design of a Dense Layered Network Model for Epileptic Seizures Prediction with Feature Representation

Author 1: Summia Parveen
Author 2: S. A. Siva Kumar
Author 3: P. MohanRaj
Author 4: Kingsly Jabakumar
Author 5: R. Senthil Ganesh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 10, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Epilepsy is a neurological disorder that influences about 60 million people all over the world. With this, about 30% of the people cannot be cured with surgery or medications. The seizure prediction in the earlier stage helps in disease prevention using therapeutic interventions. Certain studies have sensed that abnormal brain activity is observed before the initiation of seizure which is medically termed as a pre-ictal state. Various investigators intend to predict the baseline for curing the pre-ictal seizure stage; however, an effectual prediction model with higher specificity and sensitivity is still a challenging task. This work concentrates on modelling an efficient dense layered network model (DLNM) for seizure prediction using deep learning (DL) approach. The anticipated framework is composed of pre-processing, feature representation and classification with support vector based layered model (dense layered model). The anticipated model is tested for roughly about 24 subjects from CHBMIT dataset which outcomes in attaining an average accuracy of 96% respectively. The purpose of the research is to make earlier seizure prediction to reduce the mortality rate and the severity of the disease to help the human community suffering from the disease.

Keywords: Epilepsy seizure; pre-ictal state; deep learning; feature representation; vector model

Summia Parveen, S. A. Siva Kumar, P. MohanRaj, Kingsly Jabakumar and R. Senthil Ganesh, “Design of a Dense Layered Network Model for Epileptic Seizures Prediction with Feature Representation” International Journal of Advanced Computer Science and Applications(IJACSA), 13(10), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131027

@article{Parveen2022,
title = {Design of a Dense Layered Network Model for Epileptic Seizures Prediction with Feature Representation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131027},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131027},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {10},
author = {Summia Parveen and S. A. Siva Kumar and P. MohanRaj and Kingsly Jabakumar and R. Senthil Ganesh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org