The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131069
PDF

A Deep Learning and Machine Learning Approach for Image Classification of Tempered Images in Digital Forensic Analysis

Author 1: Praveen Chitti
Author 2: K. Prabhushetty
Author 3: Shridhar Allagi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 10, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Multimedia images are the primary source of communication across social media and other websites. Multimedia security has gained the attention of modern researchers and has posed dynamic challenges such as image forensics, image tampering, and deep fakes. Malicious users tamper with the image embedding noise, leading to misinterpretation of the content. Identifying and authenticating the image by detecting the forgery operations performed on it is essential. In our proposed model, we detect the forged region using the machine learning model SVM in the first iteration and Convolution Neural Network in the second iteration with Discrete Cosine Transform (DCT) for feature extraction. The proposed model is tested with a Corel 10K dataset, and an average accuracy of 98% is obtained for all kinds of image operations, including scaling, rotation, and augmentation.

Keywords: Support Vector Machine (SVM); Discrete Cosine Transform (DCT); Convolution Neural Network (CNN); Image Forensics and Image Forgery

Praveen Chitti, K. Prabhushetty and Shridhar Allagi, “A Deep Learning and Machine Learning Approach for Image Classification of Tempered Images in Digital Forensic Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 13(10), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131069

@article{Chitti2022,
title = {A Deep Learning and Machine Learning Approach for Image Classification of Tempered Images in Digital Forensic Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131069},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131069},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {10},
author = {Praveen Chitti and K. Prabhushetty and Shridhar Allagi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org