The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131074
PDF

Research on the Academic Early Warning Model of Distance Education based on Student Behavior Data in the Context of COVID-19

Author 1: Yi Qu
Author 2: Zhiyuan Sun
Author 3: Libin Liu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 10, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The COVID-19 epidemic has caused great impact on the entire society, and the spread of novel coronavirus has brought a lot of inconvenience to the education industry. To ensure the sustainability of education, distance education plays a significant role. During the process of distance education, it is necessary to examine the learning situation of students. This study proposes an academic early warning model based on long- and short-term memory (LSTM), which firstly extracts and classifies students’ behavior data, and then uses the optimized LSTM to establish an academic early warning model. The precision rate of the optimized LSTM algorithm is 0.929, the recall rate is 0.917 and the F value is 0.923, showing a higher degree of convergence than the basic LSTM algorithm. In the actual case analysis, the accuracy rate of the academic early warning system is 92.5%. The LSTM neural network shows high performance after parameter optimization, and the academic early warning model based on LSTM also has high accuracy in the actual case analysis, which proves the feasibility of the established academic early warning model.

Keywords: COVID-19; Student behavior data; Distance education; Academic early warning model

Yi Qu, Zhiyuan Sun and Libin Liu, “Research on the Academic Early Warning Model of Distance Education based on Student Behavior Data in the Context of COVID-19” International Journal of Advanced Computer Science and Applications(IJACSA), 13(10), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131074

@article{Qu2022,
title = {Research on the Academic Early Warning Model of Distance Education based on Student Behavior Data in the Context of COVID-19},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131074},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131074},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {10},
author = {Yi Qu and Zhiyuan Sun and Libin Liu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org