The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131119
PDF

Research on Sentiment Analysis Algorithm for Comments on Online Ideological and Political Courses

Author 1: Xiang Zhang
Author 2: Xiaobo Qin

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 11, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The online course teaching platform provides a more accessible and open teaching environment for teachers and students. The sentiment tendency reflected in the online course comments becomes an essential basis for teachers to adjust the course and students to choose the course. This paper combined two deep learning algorithms, i.e., a convolutional neural network (CNN) algorithm and a long short-term memory (LSTM) algorithm, to identify and analyze the emotional tendency of comments on online ideological and political courses. Moreover, the CNN+LSTM-based sentiment analysis algorithm was simulated in MATLAB software. The influence of the text vectorization method on the recognition performance of the CNN+LSTM algorithm was tested; then, it was compared with support vector machine (SVM) and LSTM algorithms, and the comments on online ideological and political courses were analyzed. The results showed that the recognition performance of the CNN+LSTM-based sentiment analysis algorithm adopting the Word2vec text vectorization method was better than that adopting the one-hot text vectorization method; the recognition performance of the CNN+LSTM algorithm was the best, the LSTM algorithm was the second, and the SVM algorithm was the worst in terms of the performance of recognizing the sentiment of comment texts; 86.36% of the selected comments on ideological and political courses contained positive sentiment, and 13.64% contained negative sentiment. Relevant suggestions were given based on the negative comments.

Keywords: Online courses; comment; sentiment tendency; long short-term memory

Xiang Zhang and Xiaobo Qin, “Research on Sentiment Analysis Algorithm for Comments on Online Ideological and Political Courses” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131119

@article{Zhang2022,
title = {Research on Sentiment Analysis Algorithm for Comments on Online Ideological and Political Courses},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131119},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131119},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {11},
author = {Xiang Zhang and Xiaobo Qin}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org